北大教授:超级计算机计算性能提升速度是"十年千倍"
在这个过程中,我们可以看到其中最大的困难是,如何获得这个解流形的结构,因为这意味着我们要给出解的参数表达式。如果能够做出这一点,一个非常困难的问题,就会变成一个非常非常简单的问题。但是我们基本上可以说,想精确给出这个表达式是没有可能的,一旦有这个可能,这个问题我想也不是一个非常值得做的问题,因为太简单了。这个时候我们有没有可能通过机器学习的手段,运用神经网络给出一个“u hat”(音)的逼近形式呢?这件事情完全是可以操作的!神经网络天然就可以表达这种函数,我们可以获得一些数据,这些数据可能来源于一些测量或者一些精细的、局部的解,这可以我们的计算能力可以获取的解。获得大量这样的数据后,然后它形式上长得像这样的数据,我们用这些点,用一个神经网络然后去构造某些损失函数训练出一个东西。然后我们就可能用这样一个网络来代替我们刚才“u hat”的形式,具体怎么操作有大量的可能性。其中比较关键的一点,我认为这种点云数据的维数怎么确定,我们确定了以后将会确定K到底是多少。以及中间的这些参数,就是ω怎么选择。经过进一步的思考,我们其实知道这些参数的选择并不是非常关键,有非常丰富的余地。 于是我们把近似的形式解代入到刚才的方程中。由于这是一个近似的形式,这个方程不可能等于零,有余项。于是我们依然可以使用刚才的套路,我们做一个检验函数写到这里面去,构造一个模型。这个模型将会是一个近似模型,无论如何它的计算量彻底小下来了。特别的一点,对于这样一个模型我们可以很轻松的给出这样一个形式的(图)后验误差估计。这个后验的形式说明,原则上我们可以对于精确的解流形什么都不知道,但是可以发展出技术手段,通过不断地减少这个误差,使得它的精度逐渐得到改进。 由于时间的关系我就讲到这里,谢谢大家! 主题分享二:《浅论超级计算、人工智能与科学计算的融合发展:以偏微分方程求解为例》 杨超 北京大学教授 杨超,北京大学数学科学学院教授,博士生导师。主要从事与超大规模并行计算相关的模型、算法、软件和应用研究,研究领域涉及计算数学、计算机科学与应用领域的交叉。研究成果曾先后获2012年中国科学院卢嘉锡青年人才奖、2016年美国计算机学会“戈登·贝尔”奖 (ACM Gordon Bell Prize)、2017年中国科学院杰出科技成就奖、2017年CCF-IEEE CS青年科学家奖等,2019年入选北京智源人工智能研究院“智源学者”。目前担任北京大学科学与工程计算中心副主任,中国科学院软件研究所学术/学位委员会委员,中国工业与应用数学学会“高性能计算与数学软件”专业委员会副主任兼秘书长,中国新一代人工智能产业技术创新战略联盟“AI指令集与开发接口”标准专题组组长等职务。 杨超:非常高兴参加这次活动,借此机会我想结合偏微分方程求解的一些经验,分享一下关于超级计算、人工智能和科学计算融合发展的观点。 从主流的科研范式来看,人们认识客观世界的三种最主要的科研手段是实验、理论和计算,最近十来年随着数据科学的兴起,基于数据的科学发现被认为是第四种重要的科研范式。而围绕计算和数据有三个非常独立但又相互关联很大的方向,超级计算、科学计算和人工智能。 从计算科学诞生之初,超级计算和科学计算的关系已经建立起来。它们之间的关系可以概括为:超级计算是支撑科学计算发展的重要工具,科学计算作为需求牵引、拉动超级计算机性能不断提升。事实上,早在电子计算机诞生之前,超级计算的思想萌芽就已产生,其中一个代表性的工作是英国数学家理查德森1922年提出来“预报工厂”的概念,这个概念被称为“理查德森之梦”。为什么说是一个梦?因为1922年当时没有电子计算机,他提出的“预报工厂”主要用于预报天气。众所周知,天气预报是科学计算领域最有代表性的一类应用。预算工厂包括64000台Human Computers,每台“计算机”由一个人完成相关计算。预报工厂中还有专人用信号灯指挥不同的“计算机”进行数据交换。“预报工厂”的计算目标是大气,把计算区域分成64000个部分,每个人负责一块,大家分别计算,并有人去协调指挥,这其实体现了早期人们畅想超级计算的一种朴素思想。 随着世界第一台电子计算机ENIAC的问世,理查德森之梦终于得以实现,ENIAC重达几十吨,占地面积非常大,并且耗电惊人。据说每当ENIAC开机的时候,整个费城的灯都暗了。1950年,冯诺伊曼和他的助手改造了ENIAC的可编程性,并在这个基础上编写了世界上第一个天气预报程序,成功完成了24小时预报,实现了理查德森之梦,也成为了科学计算的蓬勃发展的一个重要开端。 如今,历经几十年的发展,超算已经在科学计算的方方面面,例如航空、航天、气候、能源、材料、安全、天文等领域中发挥了不可取代的支撑作用。2013年美国能源部曾经统计过一些典型的科学计算应用中的计算需求,这些计算需求即便放在今天来看仍然是很大。在科学计算巨大需求的牵引之下,超级计算机的计算性能按照“十年千倍”的速度迅猛攀升。我们都知道摩尔定律,摩尔定律的是说个人计算机的性能提升速度是每18到24个月性能翻一番,而超级计算机可以达到每年性能翻一番,“十年千倍”的发展速度。 现在超算发展的一个重要趋势是:异构众核,即同一个系统有不同类型的计算核心,而且每个芯片上要集成大量的计算核心。为什么会沿着异构众核趋势发展?其实这与计算需求关系不大,更多的是超级计算发展本身的技术条件限制造成的。现在所有的超级计算机都是基于冯诺伊曼体系结构,冯诺伊曼体系结构的“算”-“存“分离特性会导致现有工艺下,为了满足计算需求,能够选择的设计方案十分有限。这样的系统现在越来越多,同一个系统有很多计算核心,而且计算核心还不一样,从设计算法和研究软件角度来说面临很大挑战。 (编辑:555手机网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |