加入收藏 | 设为首页 | 会员中心 | 我要投稿 555手机网 (https://www.555shouji.com/)- 热门手机、手机评测、云手机、手游、5G!
当前位置: 首页 > 4G频道 > 通讯 > 正文

北大教授:超级计算机计算性能提升速度是"十年千倍"

发布时间:2020-06-02 23:00:53 所属栏目:通讯 来源:网络整理
导读:北大教授:超级计算机计算性能提升速度是

明平兵:机器学习解决科学计算问题做到何种程度是最好的,这个很难回答,但是能解决以前工具不能解决的问题的工作我认为就是好工作。比如德国Ruhr-Bochum大学的J. Behler的一个工作,大概是2016/2017年,他们研究水的特性,在他们研究的那个问题中,没有可用的经验势函数。然而,Ab-initio的模拟又太昂贵了。他们用机器学习得到了一个势函数,然后通过MD模拟揭示了水分子的某种新奇特性。

孙纬武:刚刚几位老师分享的以及讨论, 比较聚焦在用人工智能技术如何帮助科学计算,或者用科学计算的手段如何解决人工智能问题,都是非常有趣的思路和方向。我想说一说我在业界里面见到的,我们面对现实世界的问题。我们经常发现要把这两个手段, 人工智能/大数据以及科学计算/高性能计算的手段, 叠加起来才能解决真实世界里面的问题。这个叠加的需要几乎是我们提供过解决方案的客户里面都有看到。必须把两种手段能够有效地整合起来才能够得到真实世界问题的解决的方案。

举个例子,刚刚说到预测股票的升降、预测美金对日元下一秒钟是升还是降,像这样的问题我们一方面需要人工智能技术,还需要大数据技术,因为要很短时间处理大量数据,这些都需要数据技术、高性能计算的技术,把这些技术整合, 还要和客户的系统配合起来才能解决真实的问题。刚才说到金融的计算、污染的计算,天气的数据,卫星观测的数据都要有效储存/调动/排查/整合,然后才能通过计算手段来解偏微分方程, 才能够预测明天的天气、污染等等,中间牵涉多方面的技术。很多我们的日常工作,比如我们目前正在解决的一个客户问题是, 证监会有大量股票交易的数据…P级的数据量,现在要查有没有人买卖股票的时候作弊。这中间就要有大数据的需求、人工智能的分析、文本挖掘的分、图像的分析、数据挖掘的分析,高性能计算的需求,软件的需要等等,这些都要整合起来才能真实的解决世界上的问题。所以我看到的不是一个为另一个服务,而是二者要加在一起的时候是最多的,也是我们从事这个方向的最大的挑战。

问题二:不管是科学计算还是机器学习,目的是为了解决实际的问题,来自于各种各样方面的实际问题,只不过选择的手段不一样。科学计算多数基于动力学、方程、原理、机理去计算;但机器学习,特别是现在的深度学习,大数据下的深度学习和AI基于的是数据,原本我想讨论的就是怎么能够甄别你问题里面科学计算到底什么时候适合机器学习,机器学习里面有些东西是不是可以不用去学习,可以基于一些原理来做,最终目标为了能够更好地解决实际问题。我觉得现在大家可以讨论一下我们如何把科学计算的手段和机器学习的手段能够结合,能够更好地解决比较实际的问题。各位嘉宾老师可以从比较综合的层面谈一谈自己的看法,也可以拿一两个具体的例子讲一下。

熊涛:刚才几位主讲老师在报告中也提到了,我觉得科学计算前面实际上还有一个很重要的就是数学建模的过程。从我来看,传统的科学计算,数学建模和计算这两个还比较独立的东西,但现在因为我们研究的问题越来越复杂,所以建模和计算也逐渐地融到一起,这两个不是那么独立了。建模一方面可以基于物理规律,另一方面比如说社会模型,像刚才孙老师提到的股票这些东西,这些东西没有一个物理的机理,可能时候在数学建模过程中采用一些实验或者个人经验的数据,但个人经验或者通过做实验得到的毕竟是在特定场景,它的适用范围可能没有那么广。所以这部分依据经验和特定场景下总结出来的规律,这部分可以将人工智能、机器学习和科学计算结合到一起来。

董彬:我自己做的研究也是希望机器学习和科学计算能够搭桥,具体怎么搭桥呢?现在在做模型设计、算法设计的时候,其实模型算法的主体结构大体上是确定的了,比如你研究一个flow的建模,它的主体可能由某种方程组成的,比如我们做图像处理,可以设计一些PDE,也可以设计一些优化模型。这些模型虽然对某个具体例子不是最优的,但总体来讲也都不差。所以在主体结构方面就不用搞黑盒子的神经网络去学了,如果去学也未必能学到我们原来设计的那么好。那么哪些环节需要引入神经网络?我觉得就是那些之前说不清除的地方,比如以前我们做建模的可能只能忍受手动调节一到三个超参数,超参数少我们还可以通过不停的观察我的数值结果手动来调,如果超参数真的很多,是没有办法人工去调的。但要有些时候,想得到更优的结果,我们需要引入更多的超参数,那么多的超参数怎么去调?现在有很多机器学习的方法可以自动的去调这些超参数。另外,我们在做建模的时候,有些时候大概知道主体方程肯定含有某些项,但还有一些非常微妙的项,大家众说纷纭,你不确定这些微妙的项应该怎么去建模。但是,如果我们可以做大量数值模拟,得到大量的数据,我们可以基于这些数据,用神经网络做一个拟设,把它嵌入到你的大模型里面,基于数据去把那些微妙的环节确定下来。我现在信奉一个套路,就是你的方法里有哪些原理是你比较清楚的,清楚的就不要去学了,那些基于经验的,基于直觉,凭手感、靠运气的地方可以用机器学习做建模,然后两个揉在一起,再根据你的问题本身的性质可以去选择是用机器学习的哪些方法训练这些环节,所以这是我们做搭桥、做融合的套路。

李若:基于数据做的所有事儿,目标就是为了构建那个解空间的结构。我们做的每一次实验,做的每一次模拟拿到的那些数据,其实都是在为那个解空间做一次观察。每做一次观察以后,你就会把你对解空间的观察做的更加稍微清晰一点,我们根据正确的一般性原理到小的解空间去解。

董彬:基于数据做微小调整。

李若:不一定是小调节。原则上来说,你把薛定谔方程简化了,那你可以去学势函数,那可不是一个小调节。

杨超:我从应用角度补充一个应用案例。实际应用中还有一个很现实的情况是很多应用领域有实时性的要求,比如短临天气预报,我们要预测1-4小时后的天气,以便及时应对天气的极端变化给生产生活带来的影响。从实时性角度来说,这样的问题传统科学计算手段处理起来难度较大,因为科学计算无论如何还是要解方程,很难在极短时间内完成模拟。机器学习有一个特点是先训练再预测,训练过程可能开销很大,但它预测的过程往往极快,往往比科学计算领域的方法快得多,所以这时候用机器学习的技术,可能能够实实在在解决一些实时性要求比较高的问题。

(编辑:555手机网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读