北大教授:超级计算机计算性能提升速度是"十年千倍"
我们现在问一问反映分子间相互作用的势函数为什么取这样的形式?另外势函数的参数是怎么来的。我们当然可以从物理定律、定理分析得到得到部分信息。机器学习方法第一步是构造对称函数,这些对称函数可以刻画势能函数的一些基本不变性。对称函数里面包含大量的未知参数。然后利用一个典型的二次损失函数可以把对称函数里面的未知参数“学习“出来,当然需要大量可靠的数据,这些数据一方面可以从诸多现有的数据库里面得到,另一方面,也可以做一个on-the-fly的电子结构模拟来提供我们需要的数据。一般来说,数据越多越精确,得到的势能函数就越精确。 基于机器学习的势函数,最早是Behler和Parrinello提出来的,之前也许有别的方法,但是目前公认的就是这个工作。这方面已经有很多工作,发展也非常快。对于没有精确势函数的材料,特别是一些新的复合材料,这个方法特别有效,大家如果有兴趣的话可以看看最近这两篇综述论文。 最后总结一下,多尺度建模提供了一种建模精确化的途径。多尺度建模主要基于物理定律。科学计算在单个尺度上的计算方法发挥了很大作用,而且为多尺度耦合算法的设计提供了概念性的东西。目前人工智能、深度学习对多尺度计算已经提供了一些新的思路,有望破除这里面的瓶颈。谢谢大家。 主题分享四:《基于流形和偏微分方程的机器学习数学模型》——史作强 史作强 清华大学数学科学系副教授 从事偏微分方程数值方法的研究,对于基于偏微分方程的机器学习的数学模型、理论和算法有深入的研究。在国内外知名学术期刊发表文章40余篇,2019年入选北京智源人工智能研究院"智源学者"。 史作强:谢谢主持人的介绍,今天非常高兴有这个机会给大家分享我们最近做的一点工作。今天的主题是AI+科学计算。前面三位老师做了非常精彩的分享。前面三位老师的分享中更多是关注于AI怎么样来帮助我们更好地进行科学计算。下面我的介绍中,我从另外一个角度,我们用科学计算的角度怎么帮助和理解AI就是机器学习里面的一些模型和方法。 这是我们的一个思路,是框架性的思路。首先我们发现很多数据,大家都知道很多数据都可以很方便地转化成高维空间度的点云,如果是100×100的一幅图像,可以看作是一万维空间中的一个点,有一堆这样的图像,(图)这就是一个点云。一维信号可以很方便的转化成这样的点云。甚至文本,如果有一篇文章,我们从新华字典里挑选出五千个常用字,然后统计文章中每个字出现的频率,然后把这篇文章转化成五千维的向量,如果有很多这样的文章,我们就可以转化成五千维中间的一堆点。各种各样不同的数据都可以转化成这样的高维空间中的点、高维空间中的点云。这里的维数非常高,相对传统科学计算处理的维数,这个维数可以轻松到几万、几十万、上百万。现在我们老是说海量数据,,在这样的高维空间中,再大量的数据都是小数据。 比如维数是一百,我们如果想在每个维数上只放两个点,就需要2的100次方的点,这已经是天文数字了。现在世界上所有计算机加起来也处理不了这么大量的数据。所以在前面尤其是李若老师的分享中特别强调数据的表象,表观上看起来维数非常高,但实际上肯定是有某种低维结构存在在里面的。数据实际的维数是比较低的。处理这种低维的结构,在数学上有一个非常有力的工具就是流形。流形可以认为是高维空间中的低维曲面,数学上把这个东西定义成用流形进行描述和刻划。我们可以假设这一堆点云在高维空间构成了低维的流形,但是这个低维的流形结构肯定是非常复杂的,我们也很难想象在很高维的空间中这个流形的结构到底是什么样的,也就是我们很难通过直接参数化的手段对这个流形结构进行刻划。只能进行间接的手段来帮助我们刻划流形的结构。我们想采用的手段是偏微分方程PDE作为一个工具,在流形上解,首先建立一个偏微分方程模型,然后求解这个模型,这个偏微分方程的解,反过来告诉我们这个流形是什么样的结构。利用偏微分方程研究这个流形也不是特别新的想法,实际上在纯数学里面,在微分几何的研究里面,这已经被大家研究的非常多。但是在我们想处理的问题里面,如果想把这个想法付诸实现就需要面临两个问题。一个问题是我们要用什么样的PDE,我们用什么样的偏微分方程比较适合我们要研究的这个问题,这是数学建模的问题。另一个问题,假设这个偏微分方程已经确定好了,我们需要怎么样求解这个偏微分方程,我们现在面临的这个偏微分方程构建高维空间上的一堆点云上,我们需要在点云上离散这个偏微分方程,来求解它,我们就需要搞一些数字方法来达到这个目的。 下面看一些具体的例子。首先,我们用非常常见的一类偏微分方程对流形建模,我们发现拉普拉斯方程,我们为什么用拉普拉斯方程对它进行建模,是因为我们发现拉普拉斯方程对应了流形的维数,我们在极小化流形的维数。大家普遍认为流形的维数应该是比较低的,相对于嵌入的高维空间,数据真实所在的流形的维数应该是比较低的。我们发现拉普拉斯方程对应极小化流形维数,所以我们用拉普拉斯方程进行建模。我们也发展一套方法,叫做就是PIM,在高维空间的点云上求解拉普拉斯方程,这个方法在一些问题里取得了不错的效果。 再看另外一个例子,这是这两年非常常用的一个网络ResNet,这个网络主要的特征是加入了shortcut。 ,从模型的结构上来看,残差网络可以建模为对流方程。对于对流方程,沿着特征线进行求解,用向前欧拉的方法离散它的特征线方程,就可以得到残差网络的结构,反过来说残差网络背后对应了偏微分方程模型,就是对流方程的控制问题。我们给定了一个对流方程的初值、终值,实际上我们想找速度场v,可以把初值变成我们想要的终值。对流方程,这样一类的偏微分方程也可以用来处理机器学习里面的问题。 (编辑:555手机网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |