加入收藏 | 设为首页 | 会员中心 | 我要投稿 555手机网 (https://www.555shouji.com/)- 热门手机、手机评测、云手机、手游、5G!
当前位置: 首页 > 资讯 > 手机新闻 > 正文

5nm工艺集体“翻车”?先进制程极限何时到?

发布时间:2021-01-25 21:09:22 所属栏目:手机新闻 来源:网络整理
导读:从苹果在2020年9月的iPad Pro上率先采用5nm工艺的A14 Bionic,随后华为、高通、三星也相继推出5nm工艺的旗舰级SoC。WikiChips分析后估计,台积电5nm的栅极间距为48nm、金属间距30nm、鳍片间距25-26nm,单元高度约为180nm。从而推算出台积电5nm的晶体管密度为1
副标题[/!--empirenews.page--]

  【手机频道】从苹果在2020年9月的iPad Pro上率先采用5nm工艺的A14 Bionic,随后华为、高通、三星也相继推出5nm工艺的旗舰级SoC。WikiChips分析后估计,台积电5nm的栅极间距为48nm、金属间距30nm、鳍片间距25-26nm,单元高度约为180nm。从而推算出台积电5nm的晶体管密度为1.713亿个每平方毫米,比初代7nm每平方毫米9120万个增加88%,台积电官方宣传的数字是84%。

  第一款出货的5nm芯片,是苹果2020年10月份发布并上市的A14仿生芯片,这款SoC的晶体管数量达到118亿个,比A13多大约40%,而且使6核CPU性能提升40%,4核图形GPU性能提升30%,功耗降低30%。第二款华为麒麟9000则集成153亿个晶体管,8核CPU、24核GPU和NPU AI处理器,官方称CPU性能提升25% ,GPU提升50%。高通和三星则在12月份相继发布由三星代工的骁龙888和Exynos 1080,同样声称性能有较大提升、并降低功耗。

  按照摩尔定律,芯片的晶体管数量每隔18-24个月翻一番,性能提升一倍。但随着半导体技术逐渐接近物理瓶颈,晶体管尺寸的微缩越来越难。从7nm推进到5nm的手机芯片的表现似乎并不尽人意,不仅在性能提升有限,功耗也面临“翻车”。特别是很多用户并不买5nm芯片的账,认为5nm手机芯片表现并没有达到预期。

  外媒9to5Mac首先指出,部分iPhone 12用户在使用手机时遇到高耗电问题,待机一夜电量下降20%至40%,哪怕有没有开启更多的后台程序,结果不变;虽然部分责任在7nm工艺的骁龙X55调制解调器上,但不可否认的是,5nm的A14 Bionic同于昂没有达到外界的预期。

  高通骁龙888是目前应用最多的5nm旗舰SoC,不少数码评测博主核使用者均指出,骁龙888 SoC的性能提升有限,功耗直接上升。外界认为原因在于代工厂三星的5nm工艺制程不成熟,三星自家的两款5nm芯片同样面临“翻车”风险。

  工艺、IC设计与功耗的平衡

  为什么5nm芯片翻车?主要原因是制造工艺不成熟。在多数人眼中,芯片设计和制造工艺是互相独立的,但事实并非如此。比如备受诟病的英特尔,为何在制造工艺开发不顺利时,新款架构无法在旧工艺上使用。虽然手机SoC并不会像英特尔处理器一样深度绑定架构和制程,但同样需要面临制造工艺成熟度带来的影响。制造工艺和IC设计不匹配时,便会造成一些问题,包括功耗、性能等。

  集成电路的功耗可以分为动态功耗和静态功耗。动态功耗通常指电路状态变化时产生的功耗,计算方法与普通电路的P=UI物理公式相同,动态功耗受到电压和电流的影响。静态功耗即每个MOS管泄露电流产生的功耗,尽管每个MOS管产生的漏电流很小,但一颗集成上亿甚至上百亿晶体管的芯片,累计的芯片态功耗就会比较大。

  在芯片工艺制程发展过程中,当工艺制程还不太先进时的动态功耗占比大,业界通过放弃最初的5V固定电压的设计模式,采用等比降压减慢功耗的增长速度。减小电压意味着晶体管的开关会变慢,更加注重性能的厂商即便采用更先进的工艺,也依然保持5V供电电压,导致功耗增大。

  随着工艺节点的进步,静态功耗的重要性逐渐显现。从英特尔和IBM的芯片工艺发展中可以看出,在工艺制程从180nm到45nm的演进过程中,晶体管集成度增速不同,动态功耗或增加或减少,但静态功耗一直呈上升趋势, 45nm时的静态功耗几乎与动态功耗持平。

  由于对性能需求不同,也就产生了高性能和高能效两种产品。诸如桌面、服务器等高性能CPU、GPU,便采用5V供电电压,确保响应速度和性能。也有厂商选择降低功耗,虽然会损失一部分性能,无需像高性能产品那般面对高功耗带来的一系列问题。

  但对于普通用户来说,设备发热严重和高功耗会直接影响使用体验,芯片散热差严重时会导致芯片异常甚至失效。所以半导体行业一直将低功耗设计视为芯片行业需要解决的问题之一,如何平衡先进节点下芯片的性能、功耗与面积(PPA), 也是芯片设计与制造的挑战。

  理论芯片制程越先进,使用更低的供电电压产生更低的动态功耗,但工艺尺寸进一步减小后,芯片的典雅来到0.13V以后便难以继续下降,也导致了近几年工艺尺寸减小时,动态功耗无法进一步下降。

  静态功耗方面,场效应管的沟道寄生电阻随节点进步变小,在电流不变的情况下,单个场效应管的功率也变小。但另一方面,单位面积内晶体管数目倍速增长又提升静态功耗,因此最终单位面积内的静态功耗可能保持不变。

  厂商为追求更低的成本,用更小面积的芯片承载更多的晶体管,看似是达成制程越先进、芯片性能越好、功耗越低。但实际情况更复杂,有的厂商通过增加核心、也有通过设计更复杂的电路,无论是增加核心还是设计更复杂的电路,都需要面对功耗激增的问题,两者之间又需要寻找新方法进行平衡。

  晶体管结构的升级

  国际商业战略IBS公司主席兼CEO Handel Jones就曾表示,传统Bulk CMOS工艺技术将在20nm走到尽头,必须用创新的思路和方法寻找新的替代工艺。胡正明教授在2020年提出全耗尽型绝缘体上硅(FD-SOI)工艺;目前行业广泛采用鳍式场效应晶体管(FinFET)则是1999年发明。FinFET工艺很好的平衡了20nm至5nm之间的芯片性能与功耗,类似于鱼鳍式的架构控制电路的连接和断开,改善电路控制并减少漏电流,晶体管的沟道也随之大幅度缩短,静态功耗随之降低。

  Moortec首席技术官Oliver King曾接受外媒体采访时称:“当制造工艺升级到16nm或14nm时,处理器速度的到很大的提高,而且漏电流也下降得比较快,以至于我们在使用处理器时能够用有限的电量做更多的事情。但从7nm升级到5nm的过程中,漏电情况几乎与28nm水平相同,以至于厂商需要重新平衡功耗和性能之间的关系。”

(编辑:555手机网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读